Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic

نویسندگان

  • Zdeňka Svobodová
  • Oxana Skoková Habuštová
  • William D. Hutchison
  • Hany M. Hussein
  • František Sehnal
  • Nicolas Desneux
چکیده

Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diabrotica-resistant Bt-maize DKc5143 event MON88017 has no impact on the field densities of the leafhopper Zyginidia scutellaris.

Auchenorrhyncha (planthoppers and leafhoppers) are herbivorous organisms that can ingest Cry proteins from genetically engineered Bt-crops depending on their feeding behaviour. Consequently, they might be directly affected by non-target Bt-protein action and more importantly serve as a source of Cry protein exposure to beneficial predatory arthropods. During a three year field study, we surveye...

متن کامل

Susceptibility of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to the entomopathogenic fungus Metarhizium anisopliae when feeding on Bacillus thuringiensis Cry3Bb1-expressing maize.

Genetically engineered maize producing the insecticidal protein Cry3Bb1 from Bacillus thuringiensis (Bt maize) is protected against corn rootworms (Diabrotica spp.), which are serious maize pests in North America and Europe. The aim of the present study was to investigate the interaction of Bt maize (event MON88017) and the entomopathogenic fungus Metarhizium anisopliae for controlling the west...

متن کامل

Influence of Matric Potential on Survival and Activity of Genetically Engineered Ralstonia eutropha H850Lr

Although the application of biodegradative genetically engineered micro organisms (GEMs) for bioremediation is very promising, the risks of their release should be assessed before their introduction into the environment. Lux-marked Ralstonia eutropha H850Lr (formerly Alcaligenes eutrophus H850Lr) was introduced into sterile and non-sterile soil microcosms at matric potentials ?2.11, ?30, ?750, ...

متن کامل

Impact of Cry3Bb1-expressing Bt maize on adults of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).

BACKGROUND Genetically engineered maize producing insecticidal Cry3Bb1 protein from Bacillus thuringiensis (Bt) is protected from root damage by corn rootworm larvae. An examination was made to establish whether western corn rootworm (Diabrotica virgifera virgifera) adults are affected by Cry3Bb1-expressing maize (MON88017) when feeding on above-ground tissue. RESULTS In laboratory bioassays,...

متن کامل

Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field.

Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above- a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015